Floral volatile organic compounds: Between attraction and deterrence of visitors under global change

Farré-Armengol G., Filella I., Llusia J., Peñuelas J. (2013) Floral volatile organic compounds: Between attraction and deterrence of visitors under global change. Perspectives in Plant Ecology, Evolution and Systematics. 15: 56-67.
Enllaç
Doi: 10.1016/j.ppees.2012.12.002

Resum:

Plants produce and emit a large variety of volatile organic compounds that play key roles in interactions with abiotic and biotic environments. One of these roles is the attraction of animals (mainly insects) that act as vectors of pollen to ensure reproduction. Here we update the current knowledge of four key aspects of floral emissions: (1) the relative importance and interaction of olfactory signals and visual cues, (2) the spatial and temporal patterns of emission in flowers, (3) the attractive and defensive functions of floral volatiles and their interference, and (4) the effects of global change on floral emissions and plant-pollinator interactions. Finally, we propose future lines of research in this field that need to be addressed or investigated further. © 2012 Perspectives in Plant Ecology, Evolution and Systematics.

Llegeix més

Floral advertisement scent in a changing plant-pollinators market

Filella I., Primante C., Llusia J., Martin Gonzalez A.M., Seco R., Farre-Armengol G., Rodrigo A., Bosch J., Penuelas J. (2013) Floral advertisement scent in a changing plant-pollinators market. Scientific Reports. 3: 0-0.
Enllaç
Doi: 10.1038/srep03434

Resum:

Plant-pollinator systems may be considered as biological markets in which pollinators choose between different flowers that advertise their nectar/pollen rewards. Although expected to play a major role in structuring plant-pollinator interactions, community-wide patterns of flower scent signals remain largely unexplored. Here we show for the first time that scent advertisement is higher in plant species that bloom early in the flowering period when pollinators are scarce relative to flowers than in species blooming later in the season when there is a surplus of pollinators relative to flowers. We also show that less abundant flowering species that may compete with dominant species for pollinator visitation early in the flowering period emit much higher proportions of the generalist attractant β-ocimene. Overall, we provide a first community-wide description of the key role of seasonal dynamics of plant-specific flower scent emissions, and reveal the coexistence of contrasting plant signaling strategies in a plant-pollinator market.

Llegeix més

Photochemical reflectance index as an indirect estimator of foliar isoprenoid emissions at the ecosystem level

Peñuelas J., Marino G., Llusia J., Morfopoulos C., Farré-Armengol G., Filella I. (2013) Photochemical reflectance index as an indirect estimator of foliar isoprenoid emissions at the ecosystem level. Nature Communications. 4: 0-0.
Enllaç
Doi: 10.1038/ncomms3604

Resum:

Terrestrial plants re-emit around 1-2% of the carbon they fix as isoprene and monoterpenes. These emissions have major roles in the ecological relationships among living organisms and in atmospheric chemistry and climate, and yet their actual quantification at the ecosystem level in different regions is far from being resolved with available models and field measurements. Here we provide evidence that a simple remote sensing index, the photochemical reflectance index, which is indicative of light use efficiency, is a good indirect estimator of foliar isoprenoid emissions and can therefore be used to sense them remotely. These results open new perspectives for the potential use of remote sensing techniques to track isoprenoid emissions from vegetation at larger scales. On the other hand, our study shows the potential of this photochemical reflectance index technique to validate the availability of photosynthetic reducing power as a factor involved in isoprenoid production. © 2013 Macmillan Publishers Limited. All rights reserved.

Llegeix més