Contrasting impacts of precipitation on Mediterranean birds and butterflies

Herrando S., Titeux N., Brotons L., Anton M., Ubach A., Villero D., García-Barros E., Munguira M.L., Godinho C., Stefanescu C. (2019) Contrasting impacts of precipitation on Mediterranean birds and butterflies. Scientific Reports. 9: 0-0.
Enllaç
Doi: 10.1038/s41598-019-42171-4

Resum:

The climatic preferences of the species determine to a large extent their response to climate change. Temperature preferences have been shown to play a key role in driving trends in animal populations. However, the relative importance of temperature and precipitation preferences is still poorly understood, particularly in systems where ecological processes are strongly constrained by the amount and timing of rainfall. In this study, we estimated the role played by temperature and precipitation preferences in determining population trends for birds and butterflies in a Mediterranean area. Trends were derived from long-term biodiversity monitoring data and temperature and precipitation preferences were estimated from species distribution data at three different geographical scales. We show that population trends were first and foremost related to precipitation preferences both in birds and in butterflies. Temperature preferences had a weaker effect on population trends, and were significant only in birds. The effect of precipitation on population trends operated in opposite directions in the two groups of species: butterfly species from arid environments and bird species from humid habitats are decreasing most. Our results indicate that, although commonly neglected, water availability is likely an important driver of animal population change in the Mediterranean region, with highly contrasting impacts among taxonomical groups. © 2019, The Author(s).

Llegeix més

Declining population trends of European mountain birds

Lehikoinen A., Brotons L., Calladine J., Campedelli T., Escandell V., Flousek J., Grueneberg C., Haas F., Harris S., Herrando S., Husby M., Jiguet F., Kålås J.A., Lindström Å., Lorrillière R., Molina B., Pladevall C., Calvi G., Sattler T., Schmid H., Sirkiä P.M., Teufelbauer N., Trautmann S. (2019) Declining population trends of European mountain birds. Global Change Biology. 25: 577-588.
Enllaç
Doi: 10.1111/gcb.14522

Resum:

Mountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountaintops. Population shifts towards poles and mountaintops have been documented in several areas, indicating that climate change is one of the key drivers of species’ distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe, we can here report a first account of population trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south-western (Iberia) and south-central mountains (Alps), covering 12 countries. Overall, the mountain bird species declined significantly (−7%) during 2002–2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant −10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in United Kingdom and Alps, trends were nonsignificant. Temperature change or migratory behaviour was not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change, and this is certainly one of the main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations. © 2018 John Wiley & Sons Ltd

Llegeix més

Building on Margalef: Testing the links between landscape structure, energy and information flows driven by farming and biodiversity

Marull J., Herrando S., Brotons L., Melero Y., Pino J., Cattaneo C., Pons M., Llobet J., Tello E. (2019) Building on Margalef: Testing the links between landscape structure, energy and information flows driven by farming and biodiversity. Science of the Total Environment. 674: 603-614.
Enllaç
Doi: 10.1016/j.scitotenv.2019.04.129

Resum:

The aim of this paper is to test two methodologies, applicable to different spatial scales (from regional to local), to predict the capacity of agroecosystems to provide habitats for the species richness of butterflies and birds, based on the ways their socio-metabolic flows change the ecological functionality of bio-cultural landscapes. First, we use the more general Intermediate Disturbance-Complexity (IDC) model to assess how different levels of human appropriation of photosynthetic production affect the landscape functional structure that hosts biodiversity. Second, we apply a more detailed Energy-Landscape Integrated Analysis (ELIA) model that focusses on the energy storage carried out by the internal biomass loops, and the energy information held in the network of energy flows driven by farmers, in order to correlate both (the energy reinvested and redistributed) with the energy imprinted in the landscape patterns and processes that sustain biodiversity. The results obtained after applying both models in the province and the metropolitan region of Barcelona support the Margalef's energy-information-structure hypothesis by showing positive relations between butterflies' species richness, IDC and ELIA, and between birds' species richness and energy information. Our findings support the view that strong relationships between farming energy flows, agroecosystem functioning and biodiversity can be detected, and highlight the importance of farmers' knowledge and labour to maintain bio-cultural landscapes. © 2019 Elsevier B.V.

Llegeix més