Different effects of alpine woody plant expansion on domestic and wild ungulates

Espunyes J., Lurgi M., Büntgen U., Bartolomé J., Calleja J.A., Gálvez-Cerón A., Peñuelas J., Claramunt-López B., Serrano E. (2019) Different effects of alpine woody plant expansion on domestic and wild ungulates. Global Change Biology. 25: 1808-1819.
Enllaç
Doi: 10.1111/gcb.14587

Resum:

Changes in land-use and climate affect the distribution and diversity of plant and animal species at different spatiotemporal scales. The extent to which species-specific phenotypic plasticity and biotic interactions mediate organismal adaptation to changing environments, however, remains poorly understood. Woody plant expansion is threatening the extent of alpine grasslands worldwide, and evaluating and predicting its effects on herbivores is of crucial importance. Here, we explore the impact of shrubification on the feeding efficiency of Pyrenean chamois (Rupicapra p. pyrenaica), as well as on the three most abundant coexisting domestic ungulate species: cattle, sheep and horses. We use observational diet composition from May to October and model different scenarios of vegetation availability where shrubland and woodland proliferate at the expense of grassland. We then predicted if the four ungulate species could efficiently utilize their food landscapes with their current dietary specificities measuring their niche breath in each scenario. We observed that the wild counterpart, due to a higher trophic plasticity, is less disturbed by shrubification compared to livestock, which rely primarily on herbaceous plants and will be affected 3.6 times more. Our results suggest that mixed feeders, such as chamois, could benefit from fallow landscapes, and that mountain farmers are at a growing economic risk worldwide due to changing land-use practices and climate conditions. © 2019 John Wiley & Sons Ltd

Llegeix més

Paleoenvironmental reconstruction of the semi-arid Chaco region of Argentina based on multiproxy lake records over the last six hundred years

Speranza F.C., Giralt S., Lupo L.C., Kulemeyer J.J., Pereira E.D.L.Á., López B.C. (2019) Paleoenvironmental reconstruction of the semi-arid Chaco region of Argentina based on multiproxy lake records over the last six hundred years. Palaeogeography, Palaeoclimatology, Palaeoecology. 524: 85-100.
Enllaç
Doi: 10.1016/j.palaeo.2019.03.037

Resum:

In this paper, we analyze the paleoclimatic and paleoenvironmental evolution of Laguna Yema in semi-arid Chaco region of Argentina over the past six hundred years. High resolution multiproxy studies of lake sediments utilize analyses of lithology, mineralogy, geochemistry, palynology, and are constrained by radiocarbon and gamma spectrometry dating. Laguna Yema sediments were mainly composed of well stratified fine sediments (silts and clays), with variable proportions of quartz, clays (illite) and feldspar (microcline and albite). Twelve light and heavy geochemical elements were registered. Most elements (Al, Si, K, Ti, Fe, Rb, Ba, and Br) are associated with illite and albite. Different material transport processes related to the changes in aridity and humidity of the basin were identified using the main mineralogical origins of geochemical elements. Palynological records indicate cycles of contraction and expansion of the lake, with an increase in concentration of Alternanthera aquatica during wet periods (expansion of lake), and an increase in Ambrosia, Poaceae and fern spores during dry periods (contraction of lake). These changes are linked to fluctuations in moisture conditions in the Subandean Mountains and semi-arid Chaco regions, in response to interactions between the South American Monsoon System (SAMS) and the South American Low Level Jet (SALLJ), which send warm and humid air to northern Argentina. In a regional context, the Laguna Yema records are in accordance with the analyses of the temporal and spatial pattern of moisture distribution for the last six centuries. © 2019 Elsevier B.V.

Llegeix més