Intraspecific variability of phenolic concentrations and their responses to elevated CO2 in two mediterranean perennial grasses

Castells E., Roumet C., Peñuelas J., Roy J. (2002) Intraspecific variability of phenolic concentrations and their responses to elevated CO2 in two mediterranean perennial grasses. Environmental and Experimental Botany. 47: 205-216.
Enllaç
Doi: 10.1016/S0098-8472(01)00123-X

Resum:

Intraspecific variability of total phenolic compound concentrations and their responses to elevated CO2 were studied in two wild Mediterranean perennial grasses, Dactylis glomerata and Bromus erectus. Ten and nine genotypes of each species were grown in climate-controlled naturally-lit glasshouses under plant intergenotypic and interspecific competition for water, light and nutrients. Carbon source-sink balance hypotheses of resource allocation were also tested. Elevated CO2 induced changes in dry shoot biomass (DM), leaf total non-structural carbohydrate concentrations [TNC] and leaf nitrogen concentrations [N] found in a previous study (New Phytol. 143 (1999) 73) were related to changes in phenolic compound concentrations. Phenolic compound concentrations increased to 15.2% DM in D. glomerata and 86.9% DM in B. erectus under elevated CO2. These changes were more pronounced when expressed on a structural dry mass basis (DMst). Increases in DMst and [TNCst] and decreases in [Nst] were also found according to current resource allocation hypotheses. However, there were no proportional changes between phenolic responses to elevated CO2 and DMst, [TNCst] and [Nst] responses. Phenolic concentrations were highly determined by genetics in both species, but all studied genotypes responded in a similar way to elevated CO2. Considering the present experimental conditions with plants growing in intraspecific and interspecific competition, the absence of CO2 × genotype interaction would lead to little changes of fitness in terms of antiherbivore chemical defence, and, therefore, to low evolutionary consequences in CBSC under the increasing atmospheric CO2 concentrations of the next decades. © 2002 Elsevier Science B.V. All rights reserved.

Llegeix més

Carbon-based secondary and structural compounds in Mediterranean shrubs growing near a natural CO2 spring

Peñuelas J., Castells E., Joffre R., Tognetti R. (2002) Carbon-based secondary and structural compounds in Mediterranean shrubs growing near a natural CO2 spring. Global Change Biology. 8: 281-288.
Enllaç
Doi: 10.1046/j.1365-2486.2002.00466.x

Resum:

We studied carbon-based secondary and structural compounds (CBSSCs) in Myrtus communis, Erica arborea, and Juniperus communis co-occuring in a natural CO2 spring site and in a nearby control site in a Mediterranean environment. Leaf concentrations of phenolics and CBSSCs, such as lignin, cellulose, and hemicellulose, total nonstructural carbohydrates (TNCs), and lipids were measured monthly (phenolics) and every two months (the other compounds) throughout a year. There was a slight seasonal trend towards maximum concentrations of most of these CBSSCs during autumn-winter and minimum values during the spring season, particularly in Myrtus communis. For most of the CBSSCs and species, there were no consistent or significant patterns in response to the elevated [CO2] (c. 700 μmol mol-1) of the spring site. These results were not due to a dilution effect by increased structural or nonstructural carbon. Therefore, in contrast to many experimental studies of CO2 enrichment, mainly conducted for short periods, there were no greater concentrations of phenolics, and, as in many of these studies, there were neither greater concentrations of the other CBSSCs. These results do not agree with the predictions of the carbon source-sink hypotheses. Possible causes of this disagreement are discussed. These causes include the complex heterogeneous environmental conditions and the variability of resource availabilities in the field, photosynthetic down-regulation, and/or the homeostatic and evolutionary nature of organisms. These results suggest evolutionary adaptive responses to changes in CO2. They also suggest caution in attributing increased CBSSC concentrations to elevated [CO2] at long-term scale in natural conditions, and therefore in their implications for plant-herbivore interactions and for decomposition.

Llegeix més