Relative contribution of groundwater to plant transpiration estimated with stable isotopes

Barbeta A., Peñuelas J. (2017) Relative contribution of groundwater to plant transpiration estimated with stable isotopes. Scientific Reports. 7: 0-0.
Enllaç
Doi: 10.1038/s41598-017-09643-x

Resum:

Water stored underground in the saturated and subsurface zones below the soil are important sources of water for plants in water-limited ecosystems. The presence of deep-rooted plants worldwide, however, suggests that the use of groundwater is not restricted to arid and seasonally dry ecosystems. We compiled the available data (71 species) on the relative contribution of groundwater to plant water estimated using stable isotopes and mixing models, which provided information about relative groundwater use, and analyzed their variation across different climates, seasons, plant types, edaphic conditions, and landscape positions. Plant use of groundwater was more likely at sites with a pronounced dry season, and represented on average 49 per cent of transpired water in dry seasons and 28 per cent in wet seasons. The relative contribution of groundwater to plant-water uptake was higher on rocky substrates (saprolite, fractured bedrock), which had reduced groundwater uptake when this source was deep belowground. In addition, we found that the connectivity between groundwater pools and plant water may be quantitatively larger and more widespread than reported by recent global estimations based on isotopic averaged values. Earth System Models should account for the feedbacks between transpiration and groundwater recharge. © 2017 The Author(s).

Llegeix més

β-Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions between Plants and Other Organisms

Farré-Armengol G., Filella I., Llusià J., Peñuelas J. (2017) β-Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions between Plants and Other Organisms. Molecules (Basel, Switzerland). 22: 0-0.
Enllaç
Doi: 10.3390/molecules22071148

Resum:

β-Ocimene is a very common plant volatile released in important amounts from the leaves and flowers of many plant species. This acyclic monoterpene can play several biological functions in plants, by potentially affecting floral visitors and also by mediating defensive responses to herbivory. The ubiquity and high relative abundance of β-ocimene in the floral scents of species from most plant families and from different pollination syndromes (ranging from generalism to specialism) strongly suggest that this terpenoid may play an important role in the attraction of pollinators to flowers. We compiled abundant evidence from published studies that supports β-ocimene as a generalist attractant of a wide spectrum of pollinators. We found no studies testing behavioural responses of pollinators to β-ocimene, that could directly demonstrate or deny the function of β-ocimene in pollinator attraction; but several case studies support that the emissions of β-ocimene in flowers of different species follow marked temporal and spatial patterns of emission, which are typical from floral volatile organic compound (VOC) emissions that are involved in pollinator attraction. Furthermore, important β-ocimene emissions are induced from vegetative plant tissues after herbivory in many species, which have relevant functions in the establishment of tritrophic interactions. We thus conclude that β-ocimene is a key plant volatile with multiple relevant functions in plants, depending on the organ and the time of emission. Experimental behavioural studies on pure β-ocimene conducted with pollinating insects will be necessary to prove the assumptions made here.

Llegeix més

Atmospheric deposition, CO2, and change in the land carbon sink

Fernández-Martínez M., Vicca S., Janssens I.A., Ciais P., Obersteiner M., Bartrons M., Sardans J., Verger A., Canadell J.G., Chevallier F., Wang X., Bernhofer C., Curtis P.S., Gianelle D., Grünwald T., Heinesch B., Ibrom A., Knohl A., Laurila T., Law B.E., Limousin J.M., Longdoz B., Loustau D., Mammarella I., Matteucci G., Monson R.K., Montagnani L., Moors E.J., Munger J.W., Papale D., Piao S.L., Peñuelas J. (2017) Atmospheric deposition, CO2, and change in the land carbon sink. Scientific Reports. 7: 0-0.
Enllaç
Doi: 10.1038/s41598-017-08755-8

Resum:

Concentrations of atmospheric carbon dioxide (CO2) have continued to increase whereas atmospheric deposition of sulphur and nitrogen has declined in Europe and the USA during recent decades. Using time series of flux observations from 23 forests distributed throughout Europe and the USA, and generalised mixed models, we found that forest-level net ecosystem production and gross primary production have increased by 1% annually from 1995 to 2011. Statistical models indicated that increasing atmospheric CO2 was the most important factor driving the increasing strength of carbon sinks in these forests. We also found that the reduction of sulphur deposition in Europe and the USA lead to higher recovery in ecosystem respiration than in gross primary production, thus limiting the increase of carbon sequestration. By contrast, trends in climate and nitrogen deposition did not significantly contribute to changing carbon fluxes during the studied period. Our findings support the hypothesis of a general CO2-fertilization effect on vegetation growth and suggest that, so far unknown, sulphur deposition plays a significant role in the carbon balance of forests in industrialized regions. Our results show the need to include the effects of changing atmospheric composition, beyond CO2, to assess future dynamics of carbon-climate feedbacks not currently considered in earth system/climate modelling. © 2017 The Author(s).

Llegeix més

Impact of soil warming on the plant metabolome of Icelandic grasslands

Gargallo-Garriga A., Ayala-Roque M., Sardans J., Bartrons M., Granda V., Sigurdsson B.D., Leblans N.I.W., Oravec M., Urban O., Janssens I.A., Peñuelas J. (2017) Impact of soil warming on the plant metabolome of Icelandic grasslands. Metabolites. 7: 0-0.
Enllaç
Doi: 10.3390/metabo7030044

Resum:

Climate change is stronger at high than at temperate and tropical latitudes. The natural geothermal conditions in southern Iceland provide an opportunity to study the impact of warming on plants, because of the geothermal bedrock channels that induce stable gradients of soil temperature. We studied two valleys, one where such gradients have been present for centuries (long-term treatment), and another where new gradients were created in 2008 after a shallow crustal earthquake (short-term treatment). We studied the impact of soil warming (0 to +15° C) on the foliar metabolomes of two common plant species of high northern latitudes: Agrostis capillaris, a monocotyledon grass; and Ranunculus acris, a dicotyledonous herb, and evaluated the dependence of shifts in their metabolomes on the length of the warming treatment. The two species responded differently to warming, depending on the length of exposure. The grass metabolome clearly shifted at the site of long-term warming, but the herb metabolome did not. The main up-regulated compounds at the highest temperatures at the long-term site were saccharides and amino acids, both involved in heat-shock metabolic pathways. Moreover, some secondary metabolites, such as phenolic acids and terpenes, associated with a wide array of stresses, were also up-regulated. Most current climatic models predict an increase in annual average temperature between 2–8° C over land masses in the Arctic towards the end of this century. The metabolomes of A. capillaris and R. acris shifted abruptly and nonlinearly to soil warming >5° C above the control temperature for the coming decades. These results thus suggest that a slight warming increase may not imply substantial changes in plant function, but if the temperature rises more than 5° C, warming may end up triggering metabolic pathways associated with heat stress in some plant species currently dominant in this region. © 2017 by the authors. Licensee MDPI, Basel, Switzerland.

Llegeix més

Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position

Gargallo-Garriga A., Wright S.J., Sardans J., Pérez-Trujillo M., Oravec M., Večeřová K., Urban O., Fernández-Martónez M., Parella T., Penuelas J. (2017) Long-term fertilization determines different metabolomic profiles and responses in saplings of three rainforest tree species with different adult canopy position. PLoS ONE. 12: 0-0.
Enllaç
Doi: 10.1371/journal.pone.0177030

Resum:

Background Tropical rainforests are frequently limited by soil nutrient availability. However, the response of the metabolic phenotypic plasticity of trees to an increase of soil nutrient availabilities is poorly understood. We expected that increases in the ability of a nutrient that limits some plant processes should be detected by corresponding changes in plant metabolome profile related to such processes. Methodology/Principal findings We studied the foliar metabolome of saplings of three abundant tree species in a 15 year field NPK fertilization experiment in a Panamanian rainforest. The largest differences were among species and explained 75% of overall metabolome variation. The saplings of the large canopy species, Tetragastris panamensis, had the lowest concentrations of all identified amino acids and the highest concentrations of most identified secondary compounds. The saplings of the amid canopyo species, Alseis blackiana, had the highest concentrations of amino acids coming from the biosynthesis pathways of glycerate-3P, oxaloacetate and - ketoglutarate, and the saplings of the low canopy species, Heisteria concinna, had the highest concentrations of amino acids coming from the pyruvate synthesis pathways. Conclusions/Significance The changes in metabolome provided strong evidence that different nutrients limit different species in different ways. With increasing P availability, the two canopy species shifted their metabolome towards larger investment in protection mechanisms, whereas with increasing N availability, the sub-canopy species increased its primary metabolism. The results highlighted the proportional distinct use of different nutrients by different species and the resulting different metabolome profiles in this high diversity community are consistent with the ecological niche theory. © 2017 Gargallo-Garriga et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Llegeix més

Global patterns of phosphatase activity in natural soils

Margalef O., Sardans J., Fernández-Martínez M., Molowny-Horas R., Janssens I.A., Ciais P., Goll D., Richter A., Obersteiner M., Asensio D., Peñuelas J. (2017) Global patterns of phosphatase activity in natural soils. Scientific Reports. 7: 0-0.
Enllaç
Doi: 10.1038/s41598-017-01418-8

Resum:

Soil phosphatase levels strongly control the biotic pathways of phosphorus (P), an essential element for life, which is often limiting in terrestrial ecosystems. We investigated the influence of climatic and soil traits on phosphatase activity in terrestrial systems using metadata analysis from published studies. This is the first analysis of global measurements of phosphatase in natural soils. Our results suggest that organic P (Porg), rather than available P, is the most important P fraction in predicting phosphatase activity. Structural equation modeling using soil total nitrogen (TN), mean annual precipitation, mean annual temperature, thermal amplitude and total soil carbon as most available predictor variables explained up to 50% of the spatial variance in phosphatase activity. In this analysis, Porg could not be tested and among the rest of available variables, TN was the most important factor explaining the observed spatial gradients in phosphatase activity. On the other hand, phosphatase activity was also found to be associated with climatic conditions and soil type across different biomes worldwide. The close association among different predictors like Porg, TN and precipitation suggest that P recycling is driven by a broad scale pattern of ecosystem productivity capacity. © 2017 The Author(s).

Llegeix més

Weakening temperature control on the interannual variations of spring carbon uptake across northern lands

Piao S., Liu Z., Wang T., Peng S., Ciais P., Huang M., Ahlstrom A., Burkhart J.F., Chevallier F., Janssens I.A., Jeong S.-J., Lin X., Mao J., Miller J., Mohammat A., Myneni R.B., Peñuelas J., Shi X., Stohl A., Yao Y., Zhu Z., Tans P.P. (2017) Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change. 7: 359-363.
Enllaç
Doi: 10.1038/nclimate3277

Resum:

Ongoing spring warming allows the growing season to begin earlier, enhancing carbon uptake in northern ecosystems. Here we use 34 years of atmospheric CO 2 concentration measurements at Barrow, Alaska (BRW, 71° N) to show that the interannual relationship between spring temperature and carbon uptake has recently shifted. We use two indicators: the spring zero-crossing date of atmospheric CO 2 (SZC) and the magnitude of CO 2 drawdown between May and June (SCC). The previously reported strong correlation between SZC, SCC and spring land temperature (ST) was found in the first 17 years of measurements, but disappeared in the last 17 years. As a result, the sensitivity of both SZC and SCC to warming decreased. Simulations with an atmospheric transport model coupled to a terrestrial ecosystem model suggest that the weakened interannual correlation of SZC and SCC with ST in the last 17 years is attributable to the declining temperature response of spring net primary productivity (NPP) rather than to changes in heterotrophic respiration or in atmospheric transport patterns. Reduced chilling during dormancy and emerging light limitation are possible mechanisms that may have contributed to the loss of NPP response to ST. Our results thus challenge the â € warmer spring-bigger sink' mechanism. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Llegeix més

Changes in nutrient concentrations of leaves and roots in response to global change factors

Sardans J., Grau O., Chen H.Y.H., Janssens I.A., Ciais P., Piao S., Peñuelas J. (2017) Changes in nutrient concentrations of leaves and roots in response to global change factors. Global Change Biology. 23: 3849-3856.
Enllaç
Doi: 10.1111/gcb.13721

Resum:

Global change impacts on biogeochemical cycles have been widely studied, but our understanding of whether the responses of plant elemental composition to global change drivers differ between above- and belowground plant organs remains incomplete. We conducted a meta-analysis of 201 reports including 1,687 observations of studies that have analyzed simultaneously N and P concentrations changes in leaves and roots in the same plants in response to drought, elevated [CO2], and N and P fertilization around the world, and contrasted the results within those obtained with a general database (838 reports and 14,772 observations) that analyzed the changes in N and P concentrations in leaves and/or roots of plants submitted to the commented global change drivers. At global level, elevated [CO2] decreased N concentrations in leaves and roots and decreased N:P ratio in roots but no in leaves, but was not related to P concentration changes. However, the response differed among vegetation types. In temperate forests, elevated [CO2] was related with lower N concentrations in leaves but not in roots, whereas in crops, the contrary patterns were observed. Elevated [CO2] decreased N concentrations in leaves and roots in tundra plants, whereas not clear relationships were observed in temperate grasslands. However, when elevated [CO2] and N fertilization coincided, leaves had lower N concentrations, whereas root had higher N concentrations suggesting that more nutrients will be allocated to roots to improve uptake of the soil resources not directly provided by the global change drivers. N fertilization and drought increased foliar and root N concentrations while the effects on P concentrations were less clear. The changes in N and P allocation to leaves and root, especially those occurring in opposite direction between them have the capacity to differentially affect above- and belowground ecosystem functions, such as litter mineralization and above- and belowground food webs. © 2017 John Wiley & Sons Ltd

Llegeix més

Pathways for balancing CO2 emissions and sinks

Walsh B., Ciais P., Janssens I.A., Peñuelas J., Riahi K., Rydzak F., Van Vuuren D.P., Obersteiner M. (2017) Pathways for balancing CO2 emissions and sinks. Nature Communications. 8: 0-0.
Enllaç
Doi: 10.1038/ncomms14856

Resum:

In December 2015 in Paris, leaders committed to achieve global, net decarbonization of human activities before 2100. This achievement would halt and even reverse anthropogenic climate change through the net removal of carbon from the atmosphere. However, the Paris documents contain few specific prescriptions for emissions mitigation, leaving various countries to pursue their own agendas. In this analysis, we project energy and land-use emissions mitigation pathways through 2100, subject to best-available parameterization of carbon-climate feedbacks and interdependencies. We find that, barring unforeseen and transformative technological advancement, anthropogenic emissions need to peak within the next 10 years, to maintain realistic pathways to meeting the COP21 emissions and warming targets. Fossil fuel consumption will probably need to be reduced below a quarter of primary energy supply by 2100 and the allowable consumption rate drops even further if negative emissions technologies remain technologically or economically unfeasible at the global scale. © 2017 The Author(s).

Llegeix més

Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments

Wilcox K.R., Shi Z., Gherardi L.A., Lemoine N.P., Koerner S.E., Hoover D.L., Bork E., Byrne K.M., Cahill J., Collins S.L., Evans S., Gilgen A.K., Holub P., Jiang L., Knapp A.K., Lecain D., Liang J., Garcia-Palacios P., Peñuelas J., Pockman W.T., Smith M.D., Sun S., White S.R., Yahdjian L., Zhu K., Luo Y. (2017) Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Global Change Biology. : 0-0.
Enllaç
Doi: 10.1111/gcb.13706

Resum:

Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes. © 2017 John Wiley & Sons Ltd.

Llegeix més

Pàgines