Drought-induced tree species replacement is reflected in the spatial variability of soil respiration in a mixed Mediterranean forest

Barba J., Curiel Yuste J., Martinez-Vilalta J., Lloret F. (2013) Drought-induced tree species replacement is reflected in the spatial variability of soil respiration in a mixed Mediterranean forest. Forest Ecology and Management. 306: 79-87.
Enllaç
Doi: 10.1016/j.foreco.2013.06.025

Resum:

As episodes of drought-induced forest mortality are being increasingly reported worldwide and may become more frequent in the future as a result of climate change, it is essential to characterize their functional implications in terms of ecosystem carbon and water fluxes. We investigated the spatial variability of soil respiration in a mixed Mediterranean forest located on rugged terrain, where Scots pine (Pinus sylvestris) is affected by drought-induced dieback and appears to have been replaced by Holm oak (Quercus ilex) as the dominant tree species. Soil respiration was measured in spring 2010 on two plots (16.2×16.2m) using a static closed chamber method (soda lime technique) and a systematic sampling (1.8-m grid) including 100 points per plot. Biotic and abiotic variables, such as soil moisture, soil temperature, soil organic matter content, stoniness, pH, fine root C:N ratio and biomass, tree basal area and tree species and health condition of nearest neighbouring tree were also recorded. Our results showed that the spatial variability of soil respiration under optimal environmental conditions (spring) was high and showed no spatial autocorrelation on the scale studied (1-18m). A mixed-effects model applied to explain the spatial variability of soil respiration indicated that only the variables related to forest structure (i.e., health condition and basal area) explained any of the observed variability of soil respiration (R2=0.45). Our model revealed that soil respiration was highest in soils close to dead pines and under Holm oak trees, suggesting that tree mortality and species replacement of pine trees by Holm oak may lead to higher soil respiration fluxes. The direct effect of tree mortality on soil respiration may be a transitory response caused by fine root mortality. Furthermore, the fact that tree species replacement as a result of drought-induced die-off is accompanied by concomitant changes in soil respiration has important implications for soil and ecosystem carbon balance. © 2013 Elsevier B.V.

Llegeix més

Changes in soil bacterial community triggered by drought-induced gap succession preceded changes in soil C stocks and quality

Yuste J.C., Barba J., Fernandez-Gonzalez A.J., Fernandez-Lopez M., Mattana S., Martinez-Vilalta J., Nolis P., Lloret F. (2012) Changes in soil bacterial community triggered by drought-induced gap succession preceded changes in soil C stocks and quality. Ecology and Evolution. 2: 3016-3031.
Enllaç
Doi: 10.1002/ece3.409

Resum:

The aim of this study was to understand how drought-induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought-induced die-off, is being replaced by Holm-oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and 13C solid-state Nuclear Magnetic Resonance (CP-MAS 13C NMR) to soils within areas of influence (defined as an surface with 2-m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close-chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below-ground before above-ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r-strategic bacteria) further gives indications of how drought-induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils.©2012 The Authors. Ecology and Evolution published by Blackwell Publishing Ltd.

Llegeix més