Drought-Induced Multifactor Decline of Scots Pine in the Pyrenees and Potential Vegetation Change by the Expansion of Co-occurring Oak Species

Galiano L., Martínez-Vilalta J., Lloret F. (2010) Drought-Induced Multifactor Decline of Scots Pine in the Pyrenees and Potential Vegetation Change by the Expansion of Co-occurring Oak Species. Ecosystems. 13: 978-991.
Enllaç
Doi: 10.1007/s10021-010-9368-8

Resum:

Episodes of drought-induced tree dieback have been recently observed in many forest areas of the world, particularly at the dry edge of species distributions. Under climate change, those effects could signal potential vegetation shifts occurring over large geographical areas, with major impacts on ecosystem form and function. In this article, we studied the effect of a single drought episode, occurred which in summer 2005, on a Scots pine population in central Pyrenees (NE Spain). Our main objective was to study the environmental correlates of forest decline and vegetation change at the plot level. General and generalized linear models were used to study the relationship between canopy defoliation, mortality and recruitment, and plot characteristics. A drought-driven multifactor dieback was observed in the study forest. Defoliation and mortality were associated with the local level of drought stress estimated at each plot. In addition, stand structure, soil properties, and mistletoe infection were also associated with the observed pattern of defoliation, presumably acting as long-term predisposing factors. Recruitment of Scots pine was low in all plots. In contrast, we observed abundant recruitment of other tree species, mostly Quercus ilex and Q. humilis, particularly in plots where Scots pine showed high defoliation and mortality. These results suggest that an altitudinal upwards migration of Quercus species, mediated by the dieback of the currently dominant species, may take place in the studied slopes. Many rear-edge populations of Scots pine sheltered in the mountain environments of the Iberian Peninsula could be at risk under future climate scenarios. © 2010 Springer Science+Business Media, LLC.

Llegeix més

Ajustos funcionals i resistència a la sequera en plantes.

Martínez-Vilalta J (2010) Ajustos funcionals i resistència a la sequera en plantes. UAB Divulga 02/2010.

Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas

Loepfe L., Martinez-Vilalta J., Oliveres J., Piñol J., Lloret F. (2010) Feedbacks between fuel reduction and landscape homogenisation determine fire regimes in three Mediterranean areas. Forest Ecology and Management. 259: 2366-2374.
Enllaç
Doi: 10.1016/j.foreco.2010.03.009

Resum:

In densely populated areas like the Mediterranean, wildfire extent is mostly limited by fire suppression and fuel fragmentation. Fire is known to spread more easily through high fuel loads and homogenous terrain and it is supposed to reduce fuel amount and continuity, creating a negative feedback. Here we combine information from administration fire records, satellite imagery fire scars and land use/cover maps to asses the effects of fire on landscape structure and vice versa for three areas in Catalonia (NE Spain). We worked with three spatial focuses: the actual fire scar, 1 km2 squares and 10 km2 squares. In these regions agriculture land abandonment has lead to increased fuel continuity, paralleled by an increment of fire size. We confirm that fire spread is facilitated by land use/cover types with high fuel load and by homogeneous terrain and that fire reduces fuel load by transforming forests into shrublands. But we also found that fire increased landscape homogeneity, creating a positive feedback on fire propagation. We argue that this is possible in landscapes with finer grain than fire alone would create. The lack of discontinuities in the fuel bed diminishes the extinction capacity of fire brigades and increases the risk of large fires. We recommend that fire management should focus more on conservation of the traditional rural mosaic in order to prevent further increases in fuel continuity and fire risk. © 2010 Elsevier B.V. All rights reserved.

Llegeix més

Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species

Martínez-Vilalta J., Mencuccini M., Vayreda J., Retana J. (2010) Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. Journal of Ecology. 98: 1462-1475.
Enllaç
Doi: 10.1111/j.1365-2745.2010.01718.x

Resum:

Surprisingly little is known about the relationship between functional traits and demographic rates of tree species under field conditions, particularly for non-tropical species. We studied the interspecific relationship between key functional traits (wood density (WD), maximum tree height, specific leaf area, nitrogen (N) content of leaves, leaf size and seed mass), demographic rates (relative growth rate (RGR) and mortality rate (MR)) and climatic niche for the 44 most abundant tree species in Spain. Demographic data were derived from the Spanish Forest Inventory, a repeated-measures scheme including c. 90 000 permanent plots spread over a territory of c. 500 000 km[TD-SUP-OPEN]2. Functional traits data came primarily from a more detailed forest inventory carried out in Catalonia, NE Spain. Our study region covers a wide range of climatic conditions and, not surprisingly, the studied species differed markedly in their climatic niche. Despite that fact, our results showed that the variability in demographic rates across species was much more related to differences in functional traits than to differences in the average climate among species. Maximum tree height and, particularly, WD, emerged as key functional traits, and were the best predictors of demographic rates in our study. These two variables also mediated the marginally significant relationship between RGR and MR, suggestive of a weak trade-off between growth and survival. The main aspects of our results were not altered by the explicit incorporation of phylogenetic effects, suggesting that the observed relationships are not due to divergences between a few major clades. Synthesis. Our study gives support to the notion that variation in functional traits across species allows them to perform largely independently of climatic conditions along environmental gradients. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.

Llegeix més

A quantitative and statistically robust method for the determination of xylem conduit spatial distribution

Mencuccini M., Martinez-Vilalta J., Piñol J., Loepfe L., Mireia B., Alvarez X., Camacho J., Gil D. (2010) A quantitative and statistically robust method for the determination of xylem conduit spatial distribution. American Journal of Botany. 97: 1247-1259.
Enllaç
Doi: 10.3732/ajb.0900289

Resum:

Premise of the study: Because of their limited length, xylem conduits need to connect to each other to maintain water transport from roots to leaves. Conduit spatial distribution in a cross section plays an important role in aiding this connectivity. While indices of conduit spatial distribution already exist, they are not well defi ned statistically. Methods: We used point pattern analysis to derive new spatial indices. One hundred and fi ve cross-sectional images from different species were transformed into binary images. The resulting point patterns, based on the locations of the conduit centersof-area, were analyzed to determine whether they departed from randomness. Conduit distribution was then modeled using a spatially explicit stochastic model. Key results: The presence of conduit randomness, uniformity, or aggregation depended on the spatial scale of the analysis. The large majority of the images showed patterns signifi cantly different from randomness at least at one spatial scale. A strong phylogenetic signal was detected in the spatial variables. Conclusions: Conduit spatial arrangement has been largely conserved during evolution, especially at small spatial scales. Species in which conduits were aggregated in clusters had a lower conduit density compared to those with uniform distribution. Statistically sound spatial indices must be employed as an aid in the characterization of distributional patterns across species and in models of xylem water transport. Point pattern analysis is a very useful tool in identifying spatial patterns. © 2010 Botanical Society of America.

Llegeix més

Woody species of a semi-arid community are only moderately resistant to cavitation

Miranda J.D.D., Padilla F.M., Martínez-Vilalta J., Pugnaire F.I. (2010) Woody species of a semi-arid community are only moderately resistant to cavitation. Functional Plant Biology. 37: 828-839.
Enllaç
Doi: 10.1071/FP09296

Resum:

Vulnerability to drought-induced cavitation and seasonal water relations of six shrub species with different functional traits (deep v. superficial roots; evergreen v. summer deciduous; leaves v. cladodes) were measured in a semi-arid plant community strongly limited by water availability. The underlying hypotheses were that species would differ in their hydraulic properties and resistance to drought, reflecting different adaptations to a common environment and that individual adaptations may involve tradeoffs that would cause hydraulic properties to co-vary. Species experiencing the lowest minimum leaf water potentials generally had lower stomatal conductance, but they were not more resistant to xylem embolism than species with higher leaf water potentials and stomatal conductance. Overall, the studied species were more vulnerable to xylem embolism than expected and experienced high rates of native embolism and percent of leafless branches during summer drought. However, recovery rates from leafless branches were also high. Xylem resistance to embolism varied between species but had no relationship with minimum leaf water potential, suggesting that (i) adaptation to arid environments does not necessarily imply high resistance to embolism; and (ii) the costs associated with embolism resistance can be compensated by other components of the hydraulic strategy of a given species. © 2010 CSIRO.

Llegeix més

Ant versus bird exclusion effects on the arthropod assemblage of an organic citrus grove

Piñol J., Espadaler X., Cañellas N., MartíNez-Vilalta J., Barrientos J.A., Sol D. (2010) Ant versus bird exclusion effects on the arthropod assemblage of an organic citrus grove. Ecological Entomology. 35: 367-376.
Enllaç
Doi: 10.1111/j.1365-2311.2010.01190.x

Resum:

Predation-exclusion experiments have highlighted that top-down control is pervasive in terrestrial communities, but most of these experiments are simplistic in that they only excluded a single group of predators and the effect of removal was evaluated on a few species from the community. The main goal of our study was to experimentally establish the relative effects of ants and birds on the same arthropod assemblage of canopy trees. We conducted 1-year long manipulative experiments in an organic citrus grove intended to quantify the independent effects of bird and ant predators on the abundance of arthropods. Birds were excluded with plastic nets whereas ants were excluded with sticky barriers on the trunks. The sticky barrier also excluded other ground dwelling insects, like the European earwig Forficula auricularia L. Both the exclusion of ants and birds affected the arthropod community of the citrus canopies, but the exclusion of ants was far more important than the exclusion of birds. Indeed, almost all groups of arthropods had higher abundance in ant-excluded than in control trees, whereas only dermapterans were more abundant in bird-excluded than in control trees. A more detailed analysis conducted on spiders also showed that the effect of ant exclusion was limited to a few families rather than being widespread over the entire diverse spectrum of spiders. Our results suggest that the relative importance of vertebrate and invertebrate predators in regulating arthropod populations largely depends on the nature of the predator-prey system. © 2010 The Authors. Journal compilation © 2010 The Royal Entomological Society.

Llegeix més