Toxicity of phenmedipham and carbendazim to Enchytraeus crypticus and Eisenia andrei (Oligochaeta) in Mediterranean soils

Chelinho S., Domene X., Campana P., Andres P., Rombke J., Sousa J.P. (2014) Toxicity of phenmedipham and carbendazim to Enchytraeus crypticus and Eisenia andrei (Oligochaeta) in Mediterranean soils. Journal of Soils and Sediments. 14: 584-599.
Enllaç
Doi: 10.1007/s11368-013-0818-8

Resum:

Purpose: The main objective of the present study was to evaluate the toxicity of two reference chemicals, Carbendazim and Phenmedipham, for the compostworm Eisenia andrei (effects of Carbendazim) and the potworm Enchytraeus crypticus (effects of Phenmedipham) in 12 Mediterranean soils with contrasting soil properties. The observed toxicity was also compared to that obtained for OECD standard soil, used as a control. Materials and methods: The soils were selected to be representative for the Mediterranean region and to cover a broad range of soil properties. The evaluated endpoints were avoidance behavior and reproduction. Soils were also assembled in two groups according to their pedological properties. Results and discussion: Toxicity benchmarks (AC50s) obtained for E. andrei avoidance behavior in carbendazim-contaminated soils were generally higher for sandy soils with low pH. The toxic effects on the reproduction of the compostworms were similar in the six tested soils, indicating a low influence of soil properties. The avoidance response of E. crypticus towards Phenmedipham was generally highly variable in all tested soils. Even though, a higher toxicity was observed for more acidic soils. The EC50s for reproduction of the latter species varied by a factor of 9 and Phenmedipham toxicity also tended to be increasing in soils with lower pH, except for the soils with extreme organic matter content (0.6 and 5.8%). Conclusions: A soil effect on chemical toxicity was clearly confirmed, highlighting the influence that test soils can have in site-specific ecological risk assessment. Despite some relationships between soil properties and toxicity were outlined, a clear and statistically significant prediction of chemical toxicity could not be established. The range of soil properties was probably narrow to give clearer and more consistent insights on their influence. For the four groups of tests, the toxicity observed for OECD soil was either similar, lower, or generally higher if compared with Mediterranean soils. Moreover, it did represent neither the organic matter content found in Mediterranean soils nor their textural classes. © 2013 Springer-Verlag Berlin Heidelberg.

Llegeix més

Soil microarthropod community testing: A new approach to increase the ecological relevance of effect data for pesticide risk assessment

Chelinho S., Domene X., Andres P., Natal-da-Luz T., Norte C., Rufino C., Lopes I., Cachada A., Espindola E., Ribeiro R., Duarte A.C., Sousa J.P. (2013) Soil microarthropod community testing: A new approach to increase the ecological relevance of effect data for pesticide risk assessment. Applied Soil Ecology. : 0-0.
Enllaç
Doi: 10.1016/j.apsoil.2013.06.009

Resum:

In the present study, a new complementary approach combining the use of the natural soil microarthropod community and conventional test methods was used. The effects of soil contamination with the insecticide carbofuran on two geographically distinct microarthropod communities (Mediterranean and Tropical) were evaluated in their soils of origin under controlled laboratory conditions. After contamination of two agricultural soils from Portugal and Brazil, a gradient of concentrations was prepared. Soil cores were taken from the respective uncontaminated surrounding areas and the mesofauna of three cores was extracted directly to the test soil. After extracting the microarthropod communities to the test soil, these were incubated under laboratory conditions for 4 weeks, after which the mesofauna was extracted again. The organisms were assorted into higher taxonomic groups and Acari and Collembola were respectively assorted into order/sub-order/cohort and family. Collembolans were still classified according to morphological traits and used as a case-study of trait based risk assessment (TERA; Baird et al., 2008) of pesticides. The exposure to insecticide contamination caused the impoverishment of the taxonomic diversity in both communities. Significant shifts in the microarthropod community structure in the different carbofuran treatments were found for both soils, although effects were more pronounced in the assay performed with the soil from Brazil. Collembolans were the most affected group with a strong decline in their abundance. A dose-response relationship was observed, showing a consistent decline on the relative abundance of Isotomidae, closely followed by an increase of Entomobryidae. Contrastingly, Acari (especially Oribatida) tended to increase their numbers with higher concentrations. Trait based analysis of Collembola data suggested that a shift in the functional composition of the communities occurred due to carbofuran soil contamination and that species adapted to deeper soil layers were more vulnerable to insecticide toxicity. © 2013 Elsevier B.V. All rights reserved.

Llegeix més

Influence of soil properties on the performance of Folsomia candida: Implications for its use in soil ecotoxicology testing

Domene X., Chelinho S., Campana P., Natal-da-Luz T., Alcañiz J.M., Andrés P., Römbke J., Sousa P. (2011) Influence of soil properties on the performance of Folsomia candida: Implications for its use in soil ecotoxicology testing. Environmental Toxicology and Chemistry. 30: 1497-1505.
Enllaç
Doi: 10.1002/etc.533

Resum:

Nineteen Mediterranean natural soils with a wide range of properties and the Organisation for Economic Co-operation and Development (OECD) artificial soil were used to assess the influence of soil properties on the results of avoidance and reproduction tests carried out with the soil collembolan species Folsomia candida. Compared to natural soils, the OECD soil was mostly rejected by individuals when a natural soil was offered in avoidance tests, and the number of offspring produced was generally lower than the one obtained in natural soils. None of the soil properties assessed showed a significant influence on the avoidance behavior. More precisely, only soil moisture was included in the model explaining the avoidance response (avoidance increased with increasing differences in moisture), but its contribution was marginally not significant. The model derived explained only 16% of the variance in avoidance response. On the contrary, several soil properties significantly influenced reproduction (number of offspring increased with increasing moisture content, increasing coarse texture, and decreasing nitrogen content). In this case, the model explained 45% of the variance in reproduction. These results, together with the fact that most of the selected soils fulfilled the validity criteria in both avoidance and reproduction tests, confirm the literature experience showing that this species is relatively insensitive to soil properties and hence highly suitable to be used in ecotoxicological tests with natural soils. In addition, our study highlights the need for accuracy in soil moisture adjustment in soil ecotoxicological tests with this species. Otherwise, results of both avoidance and reproduction tests might be biased. © 2011 SETAC.

Llegeix més

Soil bioassays as tools for sludge compost quality assessment

Domene X., Solà L., Ramírez W., Alcañiz J.M., Andrés P. (2011) Soil bioassays as tools for sludge compost quality assessment. Waste Management. 31: 512-522.
Enllaç
Doi: 10.1016/j.wasman.2010.10.013

Resum:

Composting is a waste management technology that is becoming more widespread as a response to the increasing production of sewage sludge and the pressure for its reuse in soil. In this study, different bioassays (plant germination, earthworm survival, biomass and reproduction, and collembolan survival and reproduction) were assessed for their usefulness in the compost quality assessment. Compost samples, from two different composting plants, were taken along the composting process, which were characterized and submitted to bioassays (plant germination and collembolan and earthworm performance). Results from our study indicate that the noxious effects of some of the compost samples observed in bioassays are related to the low organic matter stability of composts and the enhanced release of decomposition endproducts, with the exception of earthworms, which are favored. Plant germination and collembolan reproduction inhibition was generally associated with uncomposted sludge, while earthworm total biomass and reproduction were enhanced by these materials. On the other hand, earthworm and collembolan survival were unaffected by the degree of composting of the wastes. However, this pattern was clear in one of the composting procedures assessed, but less in the other, where the release of decomposition endproducts was lower due to its higher stability, indicating the sensitivity and usefulness of bioassays for the quality assessment of composts. © 2010 Elsevier Ltd.

Llegeix més

Improving ecological risk assessment in the Mediterranean area: selection of reference soils and evaluating the influence of soil properties on avoidance and reproduction of the oligochaetes Eisenia andrei and Enchytraeus crypticus.

Chelinho S, Domene X, Campana P, Natal-da-Luz T, Scheffczyk A, Rombke J, Andrés P, Sousa JP (2011) Improving ecological risk assessment in the Mediterranean area: selection of reference soils and evaluating the influence of soil properties on avoidance and reproduction of the oligochaetes Eisenia andrei and Enchytraeus crypticus. Environmental Toxicology and Chemistry 30: 1050–1058.

Soil pollution by nonylphenol and nonylphenol ethoxylates and their effects to plants and invertebrates

Domene X., Ramírez W., Solà L., Alcañiz J.M., Andrés P. (2009) Soil pollution by nonylphenol and nonylphenol ethoxylates and their effects to plants and invertebrates. Journal of Soils and Sediments. 9: 555-567.
Enllaç
Doi: 10.1007/s11368-009-0117-6

Resum:

Background, aim, and scope Nonylphenol polyethoxylates (NPEOs) are a widely used class of nonionic surfactants known to be toxic and endocrine-disrupting contaminants. Their use and production have been banned in the European Union and substituted by other surfactants considered as environmentally safer. However, their use continues in many countries without any legal control. Discharges of effluents from wastewater treatment plants and the application of sewage sludge application, land-filling, and accidental spillage to soils are the major sources of NPEOs in the environment. The biodegrada-tion of these surfactants is relatively easy, leading to the accumulation of the simplest chemical forms of non-ylphenol ethoxylates (NP, NP1EO, and NP2EO) and nonylphenol carboxy acids (NP2EC or NP1EC). However, these are also the most toxic end-products and have a higher environmental persistence. Compared to aquatic ecosystems, not much is known about the effects of NPEOs in terrestrial organisms, with few studies mainly centered on the effects on plants and soil microorganisms. The main aim of this study is to provide the range of concentrations of NPEOs with ecotoxicological effects on different plants and soil invertebrate species. In addition, we aim to identify the main soil properties influencing their toxicity. Materials and methods Two natural soils collected and OECD artificial soil were used in toxicity bioassays. Two different NPEO formulations were tested. On the one hand, a technical mixture of NPEOs containing chain isomers and oligomers with an average of eight ethoxy units was used for the experiments and is referred to herein as NP8EO. On the other hand, technical-grade 4-nonylphenol 95% purity was also used and called NP in this study. The chemicals were applied and mixed with soil as an acetone solution. The toxicity of NP8EO and NP was assessed in different taxonomical groups (plants, earthworms, enchytraeids, and collembolans) according to their respective standardized methods. The effect on lethal and sublethal endpoints was assessed and, by means of linear and non-linear regression models, the NPEO concentration causing 10% and 50% inhibition was estimated. The influence of soil properties on the toxicity was assessed using generalized linear models (GLM). Results The chemicals tested showed contrasting toxicities, NP being clearly more toxic than NP8EO. There were also substantial differences in the sensitivity of the species and endpoints, together with clearly different toxicities in different soils. Plants were the least affected group compared to soil invertebrates, since plant endpoints were unaffected or only slightly inhibited. In soil invertebrates, reproduction was the most affected endpoint compared to growth or survival. Toxicity was the lowest in OECD artificial soil in comparison to natural soils, with a lower organic matter content. Discussion The higher toxicity of NP, both in plant and soil invertebrate bioassays, is consistent with previously published studies and its relatively high persistence in soil. The low phytotoxicity of NP8EO and NP, unaffected at concentrations over 1 g NP kg-1, also accords with the known low uptake in plants. The effects on soil inverte-brates appeared at lower concentrations than observed in plants, enchytraeids being less affected by NP8EO than earthworms and collembolans. Drastic inhibition in the invertebrate's endpoints generally appeared over 1 g kg-1 for NP8EO and below 1 g kg-1 for NP. The range of concentrations with effects is in agreement with the few similar studies published to date. Generally, the lowest toxicity values were obtained in OECD soil, with the highest organic matter content, while the highest toxicity was found in the PRA soil, with the lowest content. However, few of the models developed by GLM identified organic carbon as a significant factor in decreasing the bioavailability and toxicity of NPEO. The probable explanation for this is the simultaneous contribution of other soil properties and in particular the limited number of soils used in the bioassays. Conclusions A low ecotoxicological risk of NPEOs might be expected for plants and soil invertebrates, since the usual concentrations in soils (below 2.6 mg kg-1) are clearly less than the lowest concentrations reported to be toxic in our study. Recommendations and perspectives Although the apparent risk of NPEOs for soil ecosystems is limited, such risks should not be neglected since significant concentrations in soil could be reached with elevated application rates or when highly polluted sludges are used. More importantly, NPEO concentrations in soils should be maintained low given the extremely high toxicity for aquatic organisms. Despite the reduced leaching of NPEOs, runoff events might transport NP attached to soil particles and affect adjacent aquatic ecosystems. © Springer-Verlag 2009.

Llegeix més

Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms

Domene X., Alcañiz J.M., Andrés P. (2008) Comparison of solid-phase and eluate assays to gauge the ecotoxicological risk of organic wastes on soil organisms. Environmental Pollution. 151: 549-558.
Enllaç
Doi: 10.1016/j.envpol.2007.04.007

Resum:

Development of methodologies to assess the safety of reusing polluted organic wastes in soil is a priority in Europe. In this study, and coupled with chemical analysis, seven organic wastes were subjected to different aquatic and soil bioassays. Tests were carried out with solid-phase waste and three different waste eluates (water, methanol, and dichloromethane). Solid-phase assays were indicated as the most suitable for waste testing not only in terms of relevance for real situations, but also because toxicity in eluates was generally not representative of the chronic effects in solid-phase. No general correlations were found between toxicity and waste pollutant burden, neither in solid-phase nor in eluate assays, showing the inability of chemical methods to predict the ecotoxicological risks of wastes. On the contrary, several physicochemical parameters reflecting the degree of low organic matter stability in wastes were the main contributors to the acute toxicity seen in collembolans and daphnids. © 2007 Elsevier Ltd. All rights reserved.

Llegeix més

Ecological risk assessment of organic waste amendments using the species sensitivity distribution from a soil organisms test battery

Domene X., Ramírez W., Mattana S., Alcañiz J.M., Andrés P. (2008) Ecological risk assessment of organic waste amendments using the species sensitivity distribution from a soil organisms test battery. Environmental Pollution. 155: 227-236.
Enllaç
Doi: 10.1016/j.envpol.2007.12.001

Resum:

Safe amendment rates (the predicted no-effect concentration or PNEC) of seven organic wastes were estimated from the species sensitivity distribution of a battery of soil biota tests and compared with different realistic amendment scenarios (different predicted environmental concentrations or PEC). None of the wastes was expected to exert noxious effects on soil biota if applied according either to the usual maximum amendment rates in Europe or phosphorus demands of crops (below 2 tonnes DM ha-1). However, some of the wastes might be problematic if applied according to nitrogen demands of crops (above 2 tonnes DM ha-1). Ammonium content and organic matter stability of the studied wastes are the most influential determinants of the maximum amendment rates derived in this study, but not pollutant burden. This finding indicates the need to stabilize wastes prior to their reuse in soils in order to avoid short-term impacts on soil communities. © 2007 Elsevier Ltd. All rights reserved.

Llegeix més

Phytotoxic effects of sewage sludge extracts on the germination of three plant species

Ramírez W.A., Domene X., Andrés P., Alcañiz J.M. (2008) Phytotoxic effects of sewage sludge extracts on the germination of three plant species. Ecotoxicology. 17: 834-844.
Enllaç
Doi: 10.1007/s10646-008-0246-5

Resum:

In order to evaluate the ability of three types of extracts to explain the ecotoxicological risk of treated municipal sewage sludges, the OECD 208A germination test was applied using three plants (Lolium perenne L., Brassica rapa L., and Trifolium pratense L.). Three equivalent batches of sludge, remained as dewatered sludge, composted with plant remains and thermally dried, from an anaerobic waste water treatment plant were separated. Samples from these three batches were extracted in water, methanol, and dichloromethane. Plant bioassays were performed and the Germination Index (GI) for the three plants was evaluated once after a period of 10 days. Germination in extracts was always lower than the respective controls. The germination in composted sludge (GI 40.9-86.2) was higher than the dewatered (GI 2.9-45.8), or thermally dried sludges (GI 24.6-64.4). A comparison of the germination between types of extracts showed differences for dewatered sludge with the three plants, where the water and methanol extracts had significantly lower germination than the dichloromethane extract. A higher half maximal effective concentration (EC50) in composted extracts was established, mainly in the water extract (EC 50 431-490 g kg-1). On the contrary, the germination was strongly inhibited in the water extract of the dewatered sludge (EC50 14 g kg-1). The germination was positively correlated with the degree of organic matter stability of the parent sludge, and an inverse correlation was detected for total nitrogen, hydrolysable nitrogen and ammonium content. It is concluded that the phytotoxic effect of the water extract is more closely related to hydrophilic substances rather than lipophilic ones, and care must be taken with dewatered sludge application, especially with their aqueous eluates. Results obtained in this work show the suitability of the use of sludge extracts in ecotoxic assays and emphasize the relevance of sewage sludge stabilization by post-treatment processes. © 2008 Springer Science+Business Media, LLC.

Llegeix més

Ecotoxicological assessment of organic wastes using the soil collembolan Folsomia candida

Domene X., Alcañiz J.M., Andrés P. (2007) Ecotoxicological assessment of organic wastes using the soil collembolan Folsomia candida. Applied Soil Ecology. 35: 461-472.
Enllaç
Doi: 10.1016/j.apsoil.2006.10.004

Resum:

The reproduction test with the collembolan Folsomia candida is used as a tool to evaluate the ecotoxicological potential of organic wastes currently applied to soil. Seven organic wastes (dewatered sewage sludges, thermally dried sewage sludges, composted sewage sludges, and a thermally dried pig slurry) were tested. These wastes had different origins, treatments, and pollutant burdens, and were selected as a representative sample of the wide variety of wastes currently generated. F. candida showed varied sensitivity depending on the waste, but also depending on the endpoint assessed. Reproduction was more sensitive than survival, although no correlations between reproduction and physico-chemical parameters and pollutant burden could be found. On the other hand, mortality was directly related to the lack of stability of wastes, probably reflecting the toxicity of end-products such as ammonium. Body length was not shown to be a sensitive endpoint for waste testing, as it was neither affected nor even stimulated by waste concentrations. Organic matter, pH, and electrical conductivity varied with waste concentration in soil-waste mixtures, although their effect on collembolan performance was expected to be low and part of the complex effect exerted by wastes when applied to real soils. Selection of the water content is the most problematic aspect in waste testing, as it may affect the performance of test organisms. In this study, a qualitative approach for water content selection in waste testing was considered to be the most suitable. Treatment of wastes affected composition and toxicity. Composting of sewage sludge increased its stability, compared to the initial sludge, but decreased its non-persistent organic pollutant burden and toxicity. On the other hand, thermally dried wastes from sludge and pig slurry displayed high toxicity, mainly attributable to their low stability. The results from the study indicate the inability of chemical methods to predict the effects of complex mixtures on living organisms with respect to ecotoxicity bioassays, but also the need for stabilization treatments of organic wastes prior to their reuse in soils. © 2006 Elsevier B.V. All rights reserved.

Llegeix més

Pàgines