Impacts of global change on Mediterranean forests and their services

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino-Serrano, M., Vives-Ingla, M., Stocker, B.D., Balzarolo, M., Guerrieri, R., Peaucelle, M., Marañón-Jiménez, S., Bórnez-Mejías, K., Mu, Z., Descals, A., Castellanos, A., Terradas, J. (2017) Impacts of global change on Mediterranean forests and their services. Forests. 8: 0-0.
Enllaç
Doi: 10.3390/f8120463

Resum:

Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia

Peñuelas, J., Sardans, J., Filella, I., Estiarte, M., Llusià, J., Ogaya, R., Carnicer, J., Bartrons, M., Rivas-Ubach, A., Grau, O., Peguero, G., Margalef, O., Pla-Rabés, S., Stefanescu, C., Asensio, D., Preece, C., Liu, L., Verger, A., Rico, L., Barbeta, A., Achotegui-Castells, A., Gargallo-Garriga, A., Sperlich, D., Farré-Armengol, G., Fernández-Martínez, M., Liu, D., Zhang, C., Urbina, I., Camino, M., Vives, M., Nadal-Sala, D., Sabaté, S., Gracia, C., Terradas, J. (2016) Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environmental and Experimental Botany. : 0-0.
Enllaç
Doi: 10.1016/j.envexpbot.2017.05.012

Resum:

Opposite metabolic responses of shoots and roots to drought

Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Rivas-Ubach A., Oravec M., Vecerova K., Urban O., Jentsch A., Kreyling J., Beierkuhnlein C., Parella T., Peñuelas J. (2014) Opposite metabolic responses of shoots and roots to drought. Scientific Reports. 4: 0-0.
Enllaç
Doi: 10.1038/srep06829

Resum:

Shoots and roots are autotrophic and heterotrophic organs of plants with different physiological functions. Do they have different metabolomes? Do their metabolisms respond differently to environmental changes such as drought? We used metabolomics and elemental analyses to answer these questions. First, we show that shoots and roots have different metabolomes and nutrient and elemental stoichiometries. Second, we show that the shoot metabolome is much more variable among species and seasons than is the root metabolome. Third, we show that the metabolic response of shoots to drought contrasts with that of roots; shoots decrease their growth metabolism (lower concentrations of sugars, amino acids, nucleosides, N, P, and K), and roots increase it in a mirrored response. Shoots are metabolically deactivated during drought to reduce the consumption of water and nutrients, whereas roots are metabolically activated to enhance the uptake of water and nutrients, together buffering the effects of drought, at least at the short term.

Llegeix més

Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees

Rivas-Ubach A., Gargallo-Garriga A., Sardans J., Oravec M., Mateu-Castell L., Perez-Trujillo M., Parella T., Ogaya R., Urban O., Penuelas J. (2014) Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytologist. 202: 874-885.
Enllaç
Doi: 10.1111/nph.12687

Resum:

At the molecular level, folivory activity on plants has mainly been related to the foliar concentrations of nitrogen (N) and/or particular metabolites. We studied the responses of different nutrients and the whole metabolome of Quercus ilex to seasonal changes and to moderate field experimental conditions of drought, and how this drought may affect folivory activity, using stoichiometric and metabolomic techniques. Foliar potassium (K) concentrations increased in summer and consequently led to higher foliar K: phosphorus (P) and lower carbon (C): K and N: K ratios. Foliar N: P ratios were not lowest in spring as expected by the growth rate hypothesis. Trees exposed to moderate drought presented higher concentrations of total sugars and phenolics and these trees also experienced more severe folivory attack. The foliar increases in K, sugars and antioxidant concentrations in summer, the driest Mediterranean season, indicated enhanced osmoprotection under natural drought conditions. Trees under moderate drought also presented higher concentrations of sugars and phenolics; a plant response to avoid water loss. These shifts in metabolism produced an indirect relationship between increased drought and folivory activity. © 2014 New Phytologist Trust.

Llegeix més

Ecometabolomics: Optimized NMR-based method

Rivas-Ubach A., Perez-Trujillo M., Sardans J., Gargallo-Garriga A., Parella T., Penuelas J. (2013) Ecometabolomics: Optimized NMR-based method. Methods in Ecology and Evolution. 4: 464-473.
Enllaç
Doi: 10.1111/2041-210X.12028

Resum:

Metabolomics is allowing great advances in biological sciences. Recently, an increasing number of ecological studies are using a metabolomic approach to answer ecological questions (ecometabolomics). Ecometabolomics is becoming a powerful tool which allows following the responses of the metabolome of an organism environmental changes and the comparison of populations. Some Nuclear Magnetic Resonance (NMR) protocols have been published for metabolomics analyses oriented to other disciplines such as biomedicine, but there is a lack of a description of a detailed protocol applied to ecological studies. Here we propose a NMR-based protocol for ecometabolomic studies that provides an unbiased overview of the metabolome of an organism, including polar and nonpolar metabolites. This protocol is aimed to facilitate the analysis of many samples, as typically required in ecological studies. In addition to NMR fingerprinting, it identifies metabolites for generating metabolic profiles applying strategies of elucidation of small molecules typically used in natural-product research, and allowing the identification of secondary and unknown metabolites. We also provide a detailed description to obtain the numerical data from the 1H-NMR spectra needed to perform the statistical analyses. We tested and optimized this protocol by using two field plant species (Erica multiflora and Quercus ilex) sampled once per season. Both species showed high levels of polar compounds such as sugars and amino acids during the spring, the growing season. E. multiflora was also experimentally submitted to drought and the NMR analyses were sensitive enough to detect some compounds related to the avoidance of water loses. This protocol has been designed for ecometabolomic studies. It identifies changes in the compositions of metabolites between individuals and detects and identifies biological markers associated with environmental changes. © 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society.

Llegeix més