Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota

Gargallo-Garriga A., Sardans J., Pérez-Trujillo M., Guenther A., Llusià J., Rico L., Terradas J., Farré-Armengol G., Filella I., Parella T., Peñuelas J. (2016) Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC Plant Biology. 16: 0-0.
Enllaç
Doi: 10.1186/s12870-016-0767-7

Resum:

Background: The phyllospheric microbiota is assumed to play a key role in the metabolism of host plants. Its role in determining the epiphytic and internal plant metabolome, however, remains to be investigated. We analyzed the Liquid Chromatography-Mass Spectrometry (LC-MS) profiles of the epiphytic and internal metabolomes of the leaves and flowers of Sambucus nigra with and without external antibiotic treatment application. Results: The epiphytic metabolism showed a degree of complexity similar to that of the plant organs. The suppression of microbial communities by topical applications of antibiotics had a greater impact on the epiphytic metabolome than on the internal metabolomes of the plant organs, although even the latter changed significantly both in leaves and flowers. The application of antibiotics decreased the concentration of lactate in both epiphytic and organ metabolomes, and the concentrations of citraconic acid, acetyl-CoA, isoleucine, and several secondary compounds such as terpenes and phenols in the epiphytic extracts. The metabolite pyrogallol appeared in the floral epiphytic community only after the treatment. The concentrations of the amino acid precursors of the ketoglutarate-synthesis pathway tended to decrease in the leaves and to increase in the foliar epiphytic extracts. Conclusions: These results suggest that anaerobic and/or facultative anaerobic bacteria were present in high numbers in the phyllosphere and in the apoplasts of S. nigra. The results also show that microbial communities play a significant role in the metabolomes of plant organs and could have more complex and frequent mutualistic, saprophytic, and/or parasitic relationships with internal plant metabolism than currently assumed. © 2016 Gargallo-Garriga et al.

Llegeix més

A tethered-balloon PTRMS sampling approach for surveying of landscape-scale biogenic VOC fluxes

Greenberg J.P., Penuelas J., Guenther A., Seco R., Turnipseed A., Jiang X., Filella I., Estiarte M., Sardans J., Ogaya R., Llusia J., Rapparini F. (2014) A tethered-balloon PTRMS sampling approach for surveying of landscape-scale biogenic VOC fluxes. Atmospheric Measurement Techniques. 7: 2263-2271.
Enllaç
Doi: 10.5194/amt-7-2263-2014

Resum:

Landscape-scale fluxes of biogenic gases were surveyed by deploying a 100 m Teflon tube attached to a tethered balloon as a sampling inlet for a fast-response proton-transfer-reaction mass spectrometer (PTRMS). Along with meteorological instruments deployed on the tethered balloon and a 3 m tripod and outputs from a regional weather model, these observations were used to estimate landscape-scale biogenic volatile organic compound fluxes with two micrometeorological techniques: mixed layer variance and surface layer gradients. This highly mobile sampling system was deployed at four field sites near Barcelona to estimate landscape-scale biogenic volatile organic compound (BVOC) emission factors in a relatively short period (3 weeks). The two micrometeorological techniques were compared with emissions predicted with a biogenic emission model using site-specific emission factors and land-cover characteristics for all four sites. The methods agreed within the uncertainty of the techniques in most cases, even though the locations had considerable heterogeneity in species distribution and complex terrain. Considering the wide range in reported BVOC emission factors for individual vegetation species (more than an order of magnitude), this temporally short and inexpensive flux estimation technique may be useful for constraining BVOC emission factors used as model inputs. © 2014 Author(s).

Llegeix més

Removal of floral microbiota reduces floral terpene emissions

Peñuelas J., Farré-Armengol G., Llusia J., Gargallo-Garriga A., Rico L., Sardans J., Terradas J., Filella I. (2014) Removal of floral microbiota reduces floral terpene emissions. Scientific Reports. 4: 0-0.
Enllaç
Doi: 10.1038/srep06727

Resum:

The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.

Llegeix més

Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin

Penuelas J., Guenther A., Rapparini F., Llusia J., Filella I., Seco R., Estiarte M., Mejia-Chang M., Ogaya R., Ibanez J., Sardans J., Castano L.M., Turnipseed A., Duhl T., Harley P., Vila J., Estavillo J.M., Menendez S., Facini O., Baraldi R., Geron C., Mak J., Patton E.G., Jiang X., Greenberg J. (2013) Intensive measurements of gas, water, and energy exchange between vegetation and troposphere during the MONTES campaign in a vegetation gradient from short semi-desertic shrublands to tall wet temperate forests in the NW Mediterranean Basin. Atmospheric Environment. 75: 348-364.
Enllaç
Doi: 10.1016/j.atmosenv.2013.04.032

Resum:

MONTES ("Woodlands") was a multidisciplinary international field campaign aimed at measuring energy, water and especially gas exchange between vegetation and atmosphere in a gradient from short semi-desertic shrublands to tall wet temperate forests in NE Spain in the North Western Mediterranean Basin (WMB). The measurements were performed at a semidesertic area (Monegros), at a coastal Mediterranean shrubland area (Garraf), at a typical Mediterranean holm oak forest area (Prades) and at a wet temperate beech forest (Montseny) during spring (April 2010) under optimal plant physiological conditions in driest-warmest sites and during summer (July 2010) with drought and heat stresses in the driest-warmest sites and optimal conditions in the wettest-coolest site. The objective of this campaign was to study the differences in gas, water and energy exchange occurring at different vegetation coverages and biomasses. Particular attention was devoted to quantitatively understand the exchange of biogenic volatile organic compounds (BVOCs) because of their biological and environmental effects in the WMB. A wide range of instruments (GC-MS, PTR-MS, meteorological sensors, O3 monitors,. .) and vertical platforms such as masts, tethered balloons and aircraft were used to characterize the gas, water and energy exchange at increasing footprint areas by measuring vertical profiles. In this paper we provide an overview of the MONTES campaign: the objectives, the characterization of the biomass and gas, water and energy exchange in the 4 sites-areas using satellite data, the estimation of isoprene and monoterpene emissions using MEGAN model, the measurements performed and the first results. The isoprene and monoterpene emission rates estimated with MEGAN and emission factors measured at the foliar level for the dominant species ranged from about 0 to 0.2mgm-2h-1 in April. The warmer temperature in July resulted in higher model estimates from about 0 to ca. 1.6mgm-2h-1 for isoprene and ca. 4.5mgm-2h-1 for monoterpenes, depending on the site vegetation and footprint area considered. There were clear daily and seasonal patterns with higher emission rates and mixing ratios at midday and summer relative to early morning and early spring. There was a significant trend in CO2 fixation (from 1 to 10mgCm-2d-1), transpiration (from1-5kgCm-2d-1), and sensible and latent heat from the warmest-driest to the coolest-wettest site. The results showed the strong land-cover-specific influence on emissions of BVOCs, gas, energy and water exchange, and therefore demonstrate the potential for feed-back to atmospheric chemistry and climate. •We present a multidisciplinary biosphere-atmosphere field campaign.•We measured a gradient from semi-desertic shrublands to wet temperate forests.•A wide range of instruments and vertical platforms were used.•Land cover strongly influenced emissions of BVOCs and gas, energy and water exchange.•Vegetation has strong potential for feed-back to atmospheric chemistry and climate. © 2013 Elsevier Ltd.

Llegeix més

Evidence of current impact of climate change on life: A walk from genes to the biosphere

Penuelas J., Sardans J., Estiarte M., Ogaya R., Carnicer J., Coll M., Barbeta A., Rivas-Ubach A., Llusia J., Garbulsky M., Filella I., Jump A.S. (2013) Evidence of current impact of climate change on life: A walk from genes to the biosphere. Global Change Biology. 19: 2303-2338.
Enllaç
Doi: 10.1111/gcb.12143

Resum:

We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade-offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life. © 2013 John Wiley & Sons Ltd.

Llegeix més

Second report on climate change in Catalonia

Llebot JE, Carnicer J, Curiel J, Coll M, Díaz de Quijano M, Estiarte M, Filella I, Garbulsky M, Jump A, Llusià J, Ogaya R, Peñuelas J, Rico L, Rivas-Ubach A, Rutishauser T, Sardans J, Seco R, Silva J, Stefanescu C, Terradas J (2012) Second report on climate change in Catalonia. Executive summary. Institut d'Estudis Catalans. Generalitat de Catalunya. pp. 1-36. ISBN9788499650975.

BVOCs in the plant-pollinator market and other applications of ecology to betytyerunderstand BVOC emissions in the environment.

Peñuelas J, Filella I, Farré G, Owen S, Primante C, Rodrigo A, Martín A, Bosch J, Seco R, Porcar A, Llusià J, Greenberg J, Harley P, Rapparini F, Estiarte M, Mejia-Chang M, Ogaya R, Ibañez J, Sardans J, Turnipseed A, Geron C, Duhl T, Facini O, Baraldi R, Rapparini F, Guenther A (2012) BVOCs in the plant-pollinator market and other applications of ecology to betytyerunderstand BVOC emissions in the environment. BVOCs Gordon Conference, Biogenic Hydrocarbons & the atmosphere. Reaching across scales: from molecule to the globe. Bates College, Maine. June 24-29. Key note invited speaker.

Ecosystemic and biospheric interactions with carbon cycle

Peñuelas J, Filella I, Estiarte M, Ogaya R, Llusià J, Sardans J, Jump A, Carnicer J, Rico L, Garbulsky M, Coll M, Díaz de Quijano M, Seco R, Rivas-Ubach A, Kefauver S, Barbeta A, Achoategui A, Mejía-Chang M, Gallardo A, Farre G, Fernández M, Terradas J (2012) Ecosystemic and biospheric interactions with carbon cycle. In Carbon dioxide budget: processes and tendencies symposium. Universitat Politècnica de Catalunya, May 23-25.

Llebot E. (ed). Impactes, vulnerabilitat i retroalimentacions climàtiques als ecosistemes terrestres catalans. Segon informe sobre el canvi climàtic a Catalunya.

Peñuelas J, Filella I, Estiarte M, Ogaya R, Llusià J, Sardans J, Jump A, Curiel J, Carnicer J, Rutishauser T, Rico L, Keenan T, Garbulsky M, Coll M, Diaz de Quijano M, Seco R, Rivas-Ubach A, Silva J, Boada M, Stefanescu C, Lloret F, Terradas J (2011) Llebot E. (ed). Impactes, vulnerabilitat i retroalimentacions climàtiques als ecosistemes terrestres catalans. Segon informe sobre el canvi climàtic a Catalunya. Institut d'Estudis Catalans i Generalitat de Catalunya. Barcelona, pp. 373-407.

Impactes, vulnerabilitat i retroalimentacions climàtiques als ecosistemes terrestres catalans. A: Llebot E. (ed). Segon informe sobre el canvi climàtic a Catalunya.

Peñuelas J, Filella I, Estiarte M, Ogaya R, Llusià J, Sardans J, Jump A, Curiel J, Carnicer J, Rutishauser T, Rico L, Keenan T, Garbulsky M, Coll M, Díaz de Quijano M, Seco R, Rivas-Ubach A, Silva J, Boada M, Stefanescu C, Lloret F, Terradas J (2010) Impactes, vulnerabilitat i retroalimentacions climàtiques als ecosistemes terrestres catalans. A: Llebot E. (ed). Segon informe sobre el canvi climàtic a Catalunya. Institut d'Estudis Catalans i Generalitat de Catalunya. pp. 373-407.

Pàgines