Root exudate metabolomes change under drought and show limited capacity for recovery

Gargallo-Garriga A., Preece C., Sardans J., Oravec M., Urban O., Peñuelas J. (2018) Root exudate metabolomes change under drought and show limited capacity for recovery. Scientific Reports. 8: 0-0.
Enllaç
Doi: 10.1038/s41598-018-30150-0

Resum:

Root exudates comprise a large variety of compounds released by plants into the rhizosphere, including low-molecular-weight primary metabolites (particularly saccharides, amino acids and organic acids) and secondary metabolites (phenolics, flavonoids and terpenoids). Changes in exudate composition could have impacts on the plant itself, on other plants, on soil properties (e.g. amount of soil organic matter), and on soil organisms. The effects of drought on the composition of root exudates, however, have been rarely studied. We used an ecometabolomics approach to identify the compounds in the exudates of Quercus ilex (holm oak) under an experimental drought gradient and subsequent recovery. Increasing drought stress strongly affected the composition of the exudate metabolome. Plant exudates under drought consisted mainly of secondary metabolites (71% of total metabolites) associated with plant responses to drought stress, whereas the metabolite composition under recovery shifted towards a dominance of primary metabolites (81% of total metabolites). These results strongly suggested that roots exude the most abundant root metabolites. The exudates were changed irreversibly by the lack of water under extreme drought conditions, and the plants could not recover. © 2018, The Author(s).

Llegeix més

Storage and release of nutrients during litter decomposition for native and invasive species under different flooding intensities in a Chinese wetland

Wang W., Wang C., Sardans J., Tong C., Ouyang L., Asensio D., Gargallo-Garriga A., Peñuelas J. (2018) Storage and release of nutrients during litter decomposition for native and invasive species under different flooding intensities in a Chinese wetland. Aquatic Botany. 149: 5-16.
Enllaç
Doi: 10.1016/j.aquabot.2018.04.006

Resum:

Projections of climate change impacts over the coming decades suggest that rising sea level will flood coastal wetlands. We studied the impacts of three intensities of flooding on litter decomposition in the native Cyperus malaccensis, and the invasives Spartina alterniflora and Phragmites australis in Shanyutan wetland (Minjiang River estuary, China). Invasive species had larger C, N and P stocks in plant-litter compartments and higher fluxes among plant-litter-soil, which increased with flooding intensity. Litter mass remaining (% of initial mass) were correlated with the N:P ratio in remaining litter, consistently with the N-limitation in this wetland. P. australis had the highest accumulated N release (P < 0.001) in all flooding intensities, whereas C. malaccensis had higher N accumulated release than S. alternifolia but only at low flooding intensity. At high flooding intensity, the N released in the first year of litter decomposition (g m−2 y−1) were 9.56 ± 0.21, 2.38 ± 0.18 and 1.92 ± 0.03 for P. australis, S. alternifolia and C. malaccensis, respectively. The higher rates of nutrient release from litter decomposition in invasive species provided better nutrient supply during the growing season coinciding with the initial phases of decomposition. Thus, this study shows that invasive species may gain a competitive advantage over the native C. malaccensis under the projected scenarios of sea level rises. © 2018 Elsevier B.V.

Llegeix més